Refine Your Search

Topic

Search Results

Technical Paper

Research on Temperature Stability of an Independent Energy Supply Device with Organic Rankine Cycles Based on Hydraulic Retarder

2017-09-22
2017-01-7003
Hydraulic retarder, as an auxiliary braking device, is widely used in commercial vehicles. Nowadays, the hydraulic retarder’s internal oil is mainly cooled by the coolant circuit directly. It not only aggravates the load of engine cooling system, but also makes the abundant heat energy not be recycled properly. In this study, an independent energy supply device with organic Rankine cycles is applied to solve the problems above. In the structure of this energy supply device, the evaporator’s inlet and outlet is connected in parallel with the oil outlet and inlet of the retarder respectively. A part of oil enters the evaporator to transfer heat with the organic fluid, and the rest of oil enters the oil-water heat exchanger to be cooled by the coolant circuit. According to the different braking conditions of the retarder, the oil temperature in the inlet of the hydraulic retarder can be kept within the proper range through adjusting the oil flow rate into the evaporator properly.
Technical Paper

Research on a Neural Network Model Based Automatic Shift Schedule with Dynamic 3-Parameters

2005-04-11
2005-01-1597
To reach the goal of optimal performance match between engine and transmission, the dynamic characteristics of engine should be taken into consideration. In the paper, the dynamic torque and fuel consumption models of engine, described by a multi-layers feed forward neural network, were established. Based on that, the methods used to calculate the optimal dynamic and economical shift schedules with dynamic 3-parameters were put forward. The shift schedule with dynamic 3-parameters based on neural network model is proven to be superior to the shift schedule with only 2-parameters in both dynamic performance and fuel economy by the test.
Technical Paper

Research on the Anti-Shuffle Control for Hybrid Electric Vehicles in the Parallel Mode

2024-04-09
2024-01-2714
In order to solve the problems of the shuffle caused by internal and external excitation and the difficulty in obtaining the real-time accurate engine torque during the parallel mode operation of hybrid electric vehicles, a dynamic coordination control strategy for suppressing the jitter of hybrid electric vehicles based on the closed-loop control of engine speed was proposed. The engine torque filtering control method based on the slope limit was adopted to limit the rate of change of the engine torque and reduce the impact caused by the sudden change of the engine torque; the engine speed closed-loop control method was used to take the motor speed which is easy to be measured accurately in real time as the feedback control variable, which solved the problem of the real-time accurate estimation of the engine torque online. In parallel mode, the motor torque accounts for a small proportion because the torque distribution method gives priority to the engine.
Technical Paper

Research on the Anti-Shuffle Control for Hybrid Electric Vehicles in the Pure Electric Mode

2024-04-09
2024-01-2713
In hybrid vehicles, the drive motor is directly connected to the drive train and the inherent drive train damping is low. When subjected to external disturbance, the low damping characteristics of the transmission system may cause torsional vibration, which will continue to oscillate the transmission system and affect the driving performance of the vehicle. In this paper, we propose a harmonic injection wheel control method based on motor speed to suppress oscillations and improve the driving performance of hybrid electric vehicles. The harmonic injection control method based on motor speed is based on Fourier transform to decompose sinusoidal harmonics based on specific order of motor speed. RLS algorithm is used to estimate the amplitude and phase, and PI control is used to calculate the compensation torque for the actual amplitude and target amplitude. Simulation and test results show that the proposed control strategy is effective in suppressing oscillations.
Technical Paper

Research on the Oscillation Reduction Control During Gearshift in Hybrid Electric Vehicles

2024-04-09
2024-01-2718
In order to realize the shift control of dual-motor hybrid electric vehicle (HEV), a non-power interruption shift control method based on three-power source coordination control was proposed by analyzing the shift process of dual-motor hybrid configuration. The shift control process was divided into three stages: oil-filling self-learning stage, torque exchange stage and inertia control stage. In the torque exchange stage, the characteristics of the speed stage and torque stage were analyzed, which was different from the traditional method's dependence on pressure sensor, longitudinal acceleration sensor and engine torque accuracy. A shift clutch gain self-learning strategy based on shift time and input shaft speed soaring problem was proposed.
Technical Paper

Research on the Oscillation Reduction Control During Mode Transition in Hybrid Electric Vehicles

2024-04-09
2024-01-2720
In order to realize the series-parallel switching control of hybrid electric vehicle (HEV) with dual-motor hybrid configuration, a method of unpowered interrupt switching based on the coordinated control of three power sources was proposed by analyzing the series-parallel driving mode of the dual-motor hybrid configuration. The series to parallel switching process is divided into three stages: speed regulation stage, clutch combination and power source switching. The distribution control of speed regulating torque is carried out in the speed regulating stage. The speed adjustment torque is preferentially allocated to the power source of the input shaft (engine and P1) to carry out the lifting torque. Due to the high speed adjustment accuracy and fast response of the P1 motor, the input shaft is preferentially allocated to P1 for speed adjustment, that is, the torque intervention of P1.
Technical Paper

Scheme and Structure Design of Binary Double Internal Meshing Planetary Gear Transmission

2021-04-14
2020-01-5227
Aiming at the low transmission efficiency and power density of the hydraulic automatic transmission (AT), and the increasingly complex structure of its planetary gear with the increase of transmission gears, this paper proposes a new type of binary logic transmission (BLT), which adopts the double internal meshing planetary row (DIMPR), based on a heavy-duty commercial vehicle. By introducing the concept of BLT and analyzing the transmission performance of the DIMPR, the process of scheme design of binary double internal meshing planetary gear transmission (BDIMPGT) is established. According to the structural characteristics of the DIMPG, the support structure of the planetary gear is designed based on CAD and CATIA. In the structural design of binary clutches, V-groove clutch parts are coupled to the transmission case, planetary carrier, and sun shaft, respectively, in each DIMPG.
Technical Paper

Simulation Investigation of Turbulent Jet Ignition (TJI) Combustion in a Dedicated Hybrid Engine under Stoichiometric Condition

2024-04-09
2024-01-2111
Turbulent jet ignition (TJI) combustion using pre-chamber ignition can accelerate the combustion speed in the cylinder and has garnered growing interest in recent years. However, it is complicated for the optimization of the pre-chamber structure and combustion system. This study investigated the effects of the pre-chamber structure and the intake ports on the combustion characteristics of a gasoline engine through CFD simulation. Spark ignition (SI) combustion simulation was also conducted for comparison. The results showed that the design of the pre-chamber that causes the jet flame colliding with walls severely worsen the combustion, increasing the knocking intendency, and decrease the thermal efficiency. Compared with SI combustion mode, the TJI combustion mode has the higher heat transfer loss and lower unburned loss. The well-optimized pre-chamber can accelerate the flame propagation with knock suppression.
Technical Paper

Simulation Research on Engine Speed Fluctuation Suppression Based on Engine Torque Observer by Using a Flywheel ISG

2019-04-02
2019-01-0787
This paper conducts simulation research on engine torque ripple suppression based on the engine torque observer by using a flywheel-ISG (integrated starter generator). Usually, engine torque can be suppressed by using a passive method such as by installing a flywheel or torsional damper. However, failure problems arise in hybrid system because of different mechanical characters of the engine and its co-axial ISG motor. On the prototype test bench, the flywheel of the engine has been removed and replaced by an ISG rotor, namely FISG (flywheel ISG). Besides, the crank and FISG rotor are directly connected, which means no dampers or clutches are installed. If the engine torque ripples can be suppressed by the same level as the flywheel and damper by FISG active torque compensation, the new system can be more compact and economical. Simulation efforts are made to verify its feasibility. Firstly, based on the experimental test bench, which is currently under construction.
Technical Paper

Slope Starting Control of Off-Road Vehicle with 32-Speed Binary Logic Automatic Transmission

2022-01-03
2022-01-5001
Taking an off-road vehicle equipped with 32-speed binary logic automatic transmission (AT) as the research object, the slope starting control research is carried out. The slope starting process is divided into the overcoming resistance stage, the sliding friction stage, and the synchronization stage. The control strategies for each stage are designed respectively. Focusing on the control of the sliding friction stage, the equivalent two-speed model of the starting clutch is established, which realizes the calculation of the speed difference and the slip rate between the driving and driven ends of the starting clutch. Furthermore, the slope starting control strategy based on the proportional-integral-derivative (PID) control of the clutch slip rate is designed. Through the simulation tests of the vehicle starting at different slopes, the correctness of the slope starting control strategy has been verified by MATLAB/Simulink.
Technical Paper

Studies on Anti-Slip Regulation Technologies for AMT Vehicles

2007-04-16
2007-01-1314
In order to improve the tractive ability, steering capability and directional stability, etc. of automated mechanical transmission (AMT) vehicles running on the wet and slippery road, the anti-slip regulation (ASR) technologies for AMT vehicles are developed. The significance of ASR for AMT vehicles is introduced; a road friction recognition method based on the deceleration of driving wheels is investigated; a fuzzy anti-slip control system based on adjustment of engine torque is developed and the corresponding experimental verification is conducted. The experimental results denote that the proposed method is effective to eliminate the excessive slip when the AMT vehicle travels on the low friction road.
Technical Paper

Support Vector Machine Theory Based Shift Quality Assessment for Automated Mechanical Transmission (AMT)

2007-04-16
2007-01-1588
In China there is a strong trend in the application of vehicles equipped with automatic transmissions in considering the complexity of traffic and the convenience of automatic transmissions. As a type of automatic transmission, automated mechanical transmission (AMT) shows great potential to be developed as a main transmission because of its simple structures, easy upgrade from manual transmission (MT) and low price. Support Vector Machine (SVM) is a new statistic method which could make a good prediction with limited training instances. Compared with Artificial Neutral Network (ANN), SVM can provide better genetic ability. In order to verify the ability of the new method, the model trained by one set of AMT car data was applied on some other AMT vehicles, and the predicted results were compared with subjective rating results by expert drivers and analyzed to identify the potential of this new assessment system.
Technical Paper

The engaging process model of sleeve and teeth ring with a precise, continuous and nonlinear damping impact model in mechanical transmissions

2017-10-08
2017-01-2443
During the engaging process of sleeve and teeth ring in mechanical transmissions, their rotational speed and position differences cause multiple engaging ways and trajectories, and casual impacts between them will delay the engaging process and cause a long power off time for a gear shift. In order to reveal the engaging mechanism of the sleeve and the teeth ring, it is essential to build a high-fidelity model to cover all of their engaging ways and capture their speed changes for an impact. In this work, our contribution is that their impact process is modeled as a precise, continuous and nonlinear damping model, and then a hybrid automaton model is built to connect the system dynamics in different mechanical coupling relationships.
Technical Paper

Travelling Resistance Estimation and Sandy Road Identification for SUVs

2018-04-03
2018-01-0578
The mechanical properties of sandy road are quite different from those of hard surface road. For vehicle control systems such as EMS (engine management system), TCU (transmission control unit) and ABS (antilock brake system), the strategies and parameters set for solid surface road are not optimal for driving on sandy road. It is an effective way to improve the mobility of all-terrain vehicles by identifying sandy road online and shifting the control strategies and parameters of control systems to sandy sets. In this paper, a sandy road identification algorithm for SUVs is proposed. Firstly, the vehicle signals, such as engine torque and speed, gear position, wheel and vehicle speed, are acquired from EMS, TCU and ESP (electronic stability program) through CAN (controller area network) bus respectively. Based on the information and longitudinal force equilibrium equation, the travelling resistance of vehicle is estimated.
X